If it's not what You are looking for type in the equation solver your own equation and let us solve it.
152=-16t^2+114t+112
We move all terms to the left:
152-(-16t^2+114t+112)=0
We get rid of parentheses
16t^2-114t-112+152=0
We add all the numbers together, and all the variables
16t^2-114t+40=0
a = 16; b = -114; c = +40;
Δ = b2-4ac
Δ = -1142-4·16·40
Δ = 10436
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{10436}=\sqrt{4*2609}=\sqrt{4}*\sqrt{2609}=2\sqrt{2609}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-114)-2\sqrt{2609}}{2*16}=\frac{114-2\sqrt{2609}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-114)+2\sqrt{2609}}{2*16}=\frac{114+2\sqrt{2609}}{32} $
| 2/9x+5=7/9x-10 | | 2(a-5)=23 | | 9d+7=61 | | 36=-4z-12 | | 200=11*3*x | | 10=y+54 | | 5x-98=72 | | 1-a=2 | | 12x(x+1)=0 | | C+16=20;x=4 | | 95+63+90+28x=360 | | 4y-62=66 | | 1/3(x-9)=-4 | | 5z-60=100 | | 3(3s+10)=39 | | 50-p=-1 | | 7(2l=10=126 | | 3=2n-2 | | -x+54=3x+26 | | -16t^2+42+5=0 | | 4(a-2)=27 | | (5x-7)+(5x-7)+(10x-23)+(10x-23)=360 | | 96+84+84+16x=360 | | 25-7x=5(-2x+5) | | x/2+10=6 | | 5x^2-3x-28=180 | | 5p-5(4p+6)+6=3(-5p-8) | | y-0.5y=600 | | 2000=19*12*x | | 2000=19*12x | | -16t^2+10t+2=0 | | 105+80+60+39x-2=360 |